OLIVIER'S THEOREM: ALL TRIANGLES ARE EQUILATERAL

Construction: Let ABC be any triangle.
Bisect angle A to meet the perpendicular bisector of $B C$ in O.
Draw perpendiculars from O to meet the sides of $\triangle A B C$ in P, Q and R.
Proof:
There are three possibilities:
(1) O lies inside, (2) outside or (3) on the triangle.
(1) If O lies inside the triangle (Figure 1):
$\triangle O B R \equiv \triangle O C R$
$S, \angle, \mathrm{~S}$
$\Rightarrow O B=O C$
$\triangle \mathrm{APO} \equiv \triangle \mathrm{AQO}$
$\Rightarrow O P=O Q$
$\Rightarrow \mathrm{AP}=\mathrm{AQ}$
$\triangle \mathrm{OPB} \equiv \triangle \mathrm{OQC}$ 90°, hyp, s: from (1) and (2)
$\Rightarrow \mathrm{PB}=\mathrm{QC}$ \qquad

Figure 1
(3) + (4): $A P+P B=A Q+Q C$
$\Rightarrow A B=A C$, i.e. $\triangle A B C$ is isosceles.
(2) If O lies outside the triangle, as in Figure 2:

We prove (1), (2), (3) and (4) exactly as above.
(3) - (4): $\mathrm{AP}-\mathrm{PB}=\mathrm{AQ}-\mathrm{QC}$
$\Rightarrow A B=A C$, i.e. $\triangle A B C$ is isosceles.

(3) If O lies on BC (Figure 3):
$O B=O C$ \qquad construction

The rest of the proof is exactly as in Figure 1:
$\mathrm{AP}+\mathrm{PB}=\mathrm{AQ}+\mathrm{QC}$
$\Rightarrow A B=A C$, i.e. $\triangle A B C$ is isosceles.
Thus, any triangle is isosceles.

Figure 3

We can similarly prove that in any triangle $A C=B C$.
So, $A B=A C=B C$, so any triangle is equilateral.
So all triangles are equilateral!

OLIVIER SE STELLING: ALLE DRIEHOEKE IS GELYKSYDIG

Konstruksie: Neem enige $\triangle A B C$. Halveer hoek A om die middelloodlyn van $B C$ in O te ontmoet. Trek loodlyne vanaf O om die sye van $\triangle A B C$ (of hul verlengings) in P, Q en R te ontmoet.

Bewys:

Daar is drie moontlikhede: O lêe binne, buite, of op die driehoek.
(1) As O binne die driehoek lê, soos in Figuur 1:
$\Delta \mathrm{OBR} \equiv \triangle \mathrm{OCR}$...... $s, \angle, \mathrm{~s}$
$\Rightarrow O B=O C$
$\triangle \mathrm{APO} \equiv \triangle \mathrm{AQO} \quad \angle, \angle, \mathrm{s}$
$\Rightarrow O P=O Q$
$\Rightarrow \mathrm{AP}=\mathrm{AQ}$
$\triangle \mathrm{OPB} \equiv \triangle \mathrm{OQC} \quad90^{\circ}$, skuins, s: van(1) en(2)
$\Rightarrow \mathrm{PB}=\mathrm{QC}$
(3) + (4): $\mathrm{AP}+\mathrm{PB}=\mathrm{AQ}+\mathrm{QC}$
$\Rightarrow A B=A C$, d.i. $\triangle A B C$ is gelykbenig.
(2) As O buite die driehoek lê, soos in Figuur 2:

Dan geld (1), (2), (3) en (4) presies soos hierbo.
(3) - (4): $\mathrm{AP}-\mathrm{PB}=\mathrm{AQ}-\mathrm{QC}$
$\Rightarrow A B=A C$, d.i. $\triangle A B C$ is gelykbenig.

Figuur 1
$\rightarrow A B=A C$ di. $\triangle A B C$ is gelybenig.

(3) As O op BC lê, soos in Figuur 3:
$0 B=0 C$ \qquad konstruksie

Die res van die bewys volg presies soos in Figuur 1:
$A P+P B=A Q+Q C$
$\Rightarrow A B=A C$, d.i. $\triangle A B C$ is gelykbenig.
Dus, enige driehoek is gelykbenig.

Figuur 3

Ons kan net so bewys dat in enige driehoek is $\mathrm{AC}=\mathrm{BC}$.
Dus, $A B=A C=B C$, dus enige driehoek is gelyksydig
Dus alle driehoeke is gelyksydig!

ALL TRIANGLES ARE EQUILATERAL - DISCUSSION

Of course, nobody believes Olivier's Theorem! And everybody knows that we can immediately prove that Olivier's Theorem is false by drawing one counter example ..

But that is not what the activity is about. The educational issue at stake is that logically, if we agree that the reasoning in an argument is valid, then we must also accept the conclusion, i.e. based on the Modus Ponens proof structure we know

$$
\text { If } P \Rightarrow Q, P \text { is true, then } Q \text { is necessarily true. }
$$

So, if you are not prepared to accept the conclusion that all triangles are equilateral, then the challenge is that you will have to find some mistake in the reasoning. Where and why is the reasoning invalid?

So the mathematical activity is to show where there is an error in thinking somewhere in the proof of Olivier's theorem ..

If you cannot find an error in thinking, you must logically accept Olivier's theorem, i.e. you must accept that all triangles are equilateral!

Prepare a document with your explanation to present on TEAMS session in Week 2

